324 research outputs found

    Lock-Free and Practical Deques using Single-Word Compare-And-Swap

    Full text link
    We present an efficient and practical lock-free implementation of a concurrent deque that is disjoint-parallel accessible and uses atomic primitives which are available in modern computer systems. Previously known lock-free algorithms of deques are either based on non-available atomic synchronization primitives, only implement a subset of the functionality, or are not designed for disjoint accesses. Our algorithm is based on a doubly linked list, and only requires single-word compare-and-swap atomic primitives, even for dynamic memory sizes. We have performed an empirical study using full implementations of the most efficient algorithms of lock-free deques known. For systems with low concurrency, the algorithm by Michael shows the best performance. However, as our algorithm is designed for disjoint accesses, it performs significantly better on systems with high concurrency and non-uniform memory architecture

    Model view management with triple graph transformation systems

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/11841883_25Proceedings of Third International Conference, ICGT 2006 Natal, Rio Grande do Norte, Brazil, September 17-23, 2006In this paper, we present our approach for model view management in the context of Multi-View Visual Languages (MVVLs). These are made of a number of diagram types (or viewpoints) that can be used for the specification of the different aspects of a system. Therefore, the user can build different system views conform to the viewpoints, which are merged in a repository in order to perform consistency checking. In addition, the user can define derived views by means of graph query patterns in order to extract information from a base model (a system view or the repository). We have provided automatic mechanisms to keep synchronized the base model and the derived view when the former changes. Predefined queries by the MVVL designer result in so-called audience-oriented views. Finally, semantic views are used for analysing the system by its translation into a semantic domain. Our approach is based on meta-modelling to describe the syntax of the MVVL and each viewpoint, and on triple graph transformation systems to synchronize and maintain correspondences between the system views and the repository, as well as between the derived, audience-oriented and semantic views and the base models. We illustrate these concepts by means of an example in the domain of security for web systems.This work has been sponsored by the Spanish Ministry of Science and Education, projects TSI2005-08225-C07-06 and TSI2004-03394

    Computational Complexity of Atomic Chemical Reaction Networks

    Full text link
    Informally, a chemical reaction network is "atomic" if each reaction may be interpreted as the rearrangement of indivisible units of matter. There are several reasonable definitions formalizing this idea. We investigate the computational complexity of deciding whether a given network is atomic according to each of these definitions. Our first definition, primitive atomic, which requires each reaction to preserve the total number of atoms, is to shown to be equivalent to mass conservation. Since it is known that it can be decided in polynomial time whether a given chemical reaction network is mass-conserving, the equivalence gives an efficient algorithm to decide primitive atomicity. Another definition, subset atomic, further requires that all atoms are species. We show that deciding whether a given network is subset atomic is in NP\textsf{NP}, and the problem "is a network subset atomic with respect to a given atom set" is strongly NP\textsf{NP}-Complete\textsf{Complete}. A third definition, reachably atomic, studied by Adleman, Gopalkrishnan et al., further requires that each species has a sequence of reactions splitting it into its constituent atoms. We show that there is a polynomial-time algorithm\textbf{polynomial-time algorithm} to decide whether a given network is reachably atomic, improving upon the result of Adleman et al. that the problem is decidable\textbf{decidable}. We show that the reachability problem for reachably atomic networks is Pspace\textsf{Pspace}-Complete\textsf{Complete}. Finally, we demonstrate equivalence relationships between our definitions and some special cases of another existing definition of atomicity due to Gnacadja

    Prediction of electric consumption using multiple linear regression methods

    Get PDF
    In the new global and local scenario, the advent of intelligent distribution networks, or Smart Grids, allows the collection of data about the operational state of the electric network in real time. Based on this data availability, the consumption prediction becomes feasible and convenient in the short term, from a few hours to a week (temporary variables). The research proposes that the method used to present the temporary variables for a system to predict electrical consumption affects the results. To verify this hypothesis, different methods for representing these variables are considered, applied to the problem of predicting daily values of electricity consumption in the city of Bogota, Colombia

    Tolerating Radiation-Induced Transient Faults in Modern Processors

    Full text link

    Interrupt Timed Automata: verification and expressiveness

    Get PDF
    We introduce the class of Interrupt Timed Automata (ITA), a subclass of hybrid automata well suited to the description of timed multi-task systems with interruptions in a single processor environment. While the reachability problem is undecidable for hybrid automata we show that it is decidable for ITA. More precisely we prove that the untimed language of an ITA is regular, by building a finite automaton as a generalized class graph. We then establish that the reachability problem for ITA is in NEXPTIME and in PTIME when the number of clocks is fixed. To prove the first result, we define a subclass ITA- of ITA, and show that (1) any ITA can be reduced to a language-equivalent automaton in ITA- and (2) the reachability problem in this subclass is in NEXPTIME (without any class graph). In the next step, we investigate the verification of real time properties over ITA. We prove that model checking SCL, a fragment of a timed linear time logic, is undecidable. On the other hand, we give model checking procedures for two fragments of timed branching time logic. We also compare the expressive power of classical timed automata and ITA and prove that the corresponding families of accepted languages are incomparable. The result also holds for languages accepted by controlled real-time automata (CRTA), that extend timed automata. We finally combine ITA with CRTA, in a model which encompasses both classes and show that the reachability problem is still decidable. Additionally we show that the languages of ITA are neither closed under complementation nor under intersection

    Plug and Play: Interoperability in Concert

    Full text link
    In order to make database systems interoperate with systems beyond traditional application areas a new paradigm called "exporting database functionality" as a radical departure from traditional thinking has been proposed in research anddevelopment. Traditionally, all data is loaded into and owned by the database, whereas according to the new paradigm data may reside outside the database in external repositories or archives. Nevertheless, database functionality, such as query processing, and indexing, is provided exploiting interoperability ofthe DBMS with the external repositories. Obviously, there is an overhead involved having the DBMS interoperate with external repositories instead of a priori loading all data into the DBMS. In this paper we discuss alternatives for interoperability at di erent levels of abstraction, and we report on evaluations performed using the Concert prototype system making these cost factors explicit

    Locating previously unknown patterns in data-mining results: a dual data- and knowledge-mining method

    Get PDF
    BACKGROUND: Data mining can be utilized to automate analysis of substantial amounts of data produced in many organizations. However, data mining produces large numbers of rules and patterns, many of which are not useful. Existing methods for pruning uninteresting patterns have only begun to automate the knowledge acquisition step (which is required for subjective measures of interestingness), hence leaving a serious bottleneck. In this paper we propose a method for automatically acquiring knowledge to shorten the pattern list by locating the novel and interesting ones. METHODS: The dual-mining method is based on automatically comparing the strength of patterns mined from a database with the strength of equivalent patterns mined from a relevant knowledgebase. When these two estimates of pattern strength do not match, a high "surprise score" is assigned to the pattern, identifying the pattern as potentially interesting. The surprise score captures the degree of novelty or interestingness of the mined pattern. In addition, we show how to compute p values for each surprise score, thus filtering out noise and attaching statistical significance. RESULTS: We have implemented the dual-mining method using scripts written in Perl and R. We applied the method to a large patient database and a biomedical literature citation knowledgebase. The system estimated association scores for 50,000 patterns, composed of disease entities and lab results, by querying the database and the knowledgebase. It then computed the surprise scores by comparing the pairs of association scores. Finally, the system estimated statistical significance of the scores. CONCLUSION: The dual-mining method eliminates more than 90% of patterns with strong associations, thus identifying them as uninteresting. We found that the pruning of patterns using the surprise score matched the biomedical evidence in the 100 cases that were examined by hand. The method automates the acquisition of knowledge, thus reducing dependence on the knowledge elicited from human expert, which is usually a rate-limiting step
    corecore